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Extended Electron and Nonlocal Electromagnetic 
Interaction: The Perturbation Theory 
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The nonlocal interaction between electrons and electromagnetic fields is 
considered. It is shown ihat different contraction forms of interacting fields are 
equivalent to different nonlocal theories where nonlocality is connected to either 
the photon field or the electron field, or to both these fields simultaneously. The 
nonlocal theory where the electron carries nonlocality is studied in detail. The 
gauge invariance of this model is achieved by using the d-operation applying the 
perturbation theory. Primitive Feynman diagrams of the nonlocal theory are 
investigated and a restriction on the "size" 1 of the electron is obtained. From 
low-energy experimental data from tests of local quantum electrodynamics it 
follows that 1 _----- 10 -~5 cm. 

1. INTRODUCTION 

The concept of extended (or spread-out) particles plays an important 
role in the construction of a unified field theory of elementary particle interac- 
tions. One of the best examples is the string field theory (Green et al., 1987), 
which underlies the physics of two-dimensional field theory. In this paper 
we use the Efimov (1977) approach to the description of the nonlocal interac- 
tion of quantized fields. This theory is phenomenological, where nonlocal 
(extended) objects are constructed by using a form factor of the theory; for 
example, the wave function of the nonlocal electron takes the form 

• (x) = f day Kt(y)tb(x - y) (I.1) 

where ~(x) is the local wavefunction of the electron; Kt(y) is the form 
factor connected with the "structural size" l of the electron and satisfies the 
normalization condition 
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f d4y Kt(y) (1.2) l 

in Euclidean space. Its Fourier transform is an entire analytic function in 
momentum space, for example, 

K(p2l 2) = exp( 

where 

p2 + m2'~ 
(1.3) 

p2 = p24 + p2 

We know that the local field of the electron ~(x) satisfies the Dirac 
equation 

( 0 Ox--:~ (1.4) 

Then the equation of motion for the extended electron field (l. l) is 

f ( 0 +m)~b(x-y)=O (1.5) day Kt(y) i~ 3x---~ 

In a previous paper (Namsrai and Njamtseren, 1994) we have studied 
gauge invariance of the given scheme by using the d-operation (Kroll, 1966) 
[for details see Namsrai (1986)] in the momentum representation. This work 
is devoted to the construction of the perturbation theory where only the 
electron carries nonlocality, and investigates primitive Feynman diagrams, 
which allows us to obtain a restriction on the "size" of the electron from 
low-energy experimental data. 

2. GAUGE INVARIANCE AND INTRODUCING INTERACTION 
OF ELECTROMAGNETIC FIELD 

2.1. The Local Case 

It is well known that the Dirac equation (t.4) is invariant under global 
gauge transformation 

~(X) ~ ~J'(X) = ei~dd (2.1) 

where e~ is a constant parameter. If instead of (2.1) we consider the local 
gauge transformation 
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~'(x) = S-l~J(x), S -I = exp[ief(x)] (2.2) 

[where f (x)  depends on variable x], then the Dirac equation (1.4) is not 
invariant under the transformation (2.2). In order to compensate for the term 
breaking gauge invariance in the Dirac equation, we should introduce a gauge 
field A~(x) into it by means of the following formal procedure: 

0 0 
- ieA~(x) 

Ox~ ~ 

Then the Dirac equation (1.4) takes the form 

a~ + ea~(x)'y~+(x) + md~(x) = 0 (2.3) A(x) = i~¢ Ox¢ 

This equation preserves its form (i.e., invariance holds) 

SA'(x) = A(x) (2.4) 

where 

S = exp[-ief(x)] ,  ~'(x) = exp[-ief(x)]d~(x) (2.5) 

a'~(x) = a~(x) + Of(x) (2.6) 
Ox~. 

In our case, A~(x) is the electromagnetic field carrying spin 1. 

2.2. The Nonlocal Case 

For the nonlocal field (1.1), a gauge-invariant equation similar to (2.4) 
yields the form 

I d4y Kt(y)SA'(x - y ) =  f d4y K(y)SA(x - y ) = 0  (2.7) 

where 

o ~ ' ( x  - y)  + eA'~ (x  - y ) ~ , ~ ' ( x  - y)  + m ~ ' ( x  - y )  A'(x - y) = i~t~ Ox~. 

In the given case S = exp{-ief(x - y)}. 
The integral equation (2.7) allows us to introduce a nonlocal interaction 

Lagrangian instead of the local one, 

Lint(x) = e-~(X)~l~.~(x)a~(x) (2.8) 

Here we consider four different forms of the interaction Lagrangian. 
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3. DIFFERENT FORMS OF THE INTERACTION LAGRANGIAN 

We use the following possible contraction terms: 

Lit.(x) = e f d4y Kt(y)-~(x - y) 'y , .~(x - y)A, . (x  - y)  (3.1) 

L ~ 6 ( x ) = e f f d 4 y t d 4 y 2 K t ( y l ) K t ( y 2 )  

× ~(x - Yl - y2)"&~(x - Yl - y2)A,.(x - Yl)  (3.2) 

L~n(x) = e f f d4yl d4y2 Kl(yOKt(y2)  

× ~(x - yt)~/~(x - y2)A~(x - Y2) (3.3) 

L a n ( x ) = e f I I d 4 y ,  d 4 y 2 d ' y 3 K t ( y , ) K t ( y 2 ) K t ( y 3 )  

N -~(x - yl)"to.~(X -- yz)A, . (x  - Yl - Y2 - Y3) 

= e I I  d4yl d4y2 Kl(Yl)Kt(y2)  

× "~(x - yl)'y~.~(x - ~,t.o.lo~aU Y2)'-'~ ~x - Yl - Y2) (3.4) 

where 

nonlocal f A~. (x - z) = d4y3 Kt(y3)A~(x  - Z - Y3) 

By using the perturbation theory in the momentum representation in the 
Euclidean metric one can easily show that: 

1. The interaction Lagrangian (3.1) is equivalent to the local one (2.8), 
i.e.. it describes the local theory. 

2. The Lagrangian (3.2) leads to the nonlocal theory where only the 
photon field is responsible for nonlocality 

LZ.(x) = e :-~(x)'y~d)(x)A~°"l°~al(x): (3.5) 

where 

nonlocal f Ao. (x) = d4y  Kt(y)Ao.(x - y)  

and its propagator has the form 
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D~,,(x y) (01 .o.io~ai non[ocal -- = T[A¢ (x)A,, (y)] 10) 

_ 1 I 1 /~2(_p2/2) (3.6) (2,rr)4i g~, d4p e-lP<x-Y) p2 + i-------'~ 

3. The interaction Lagrangian (3.3) deals with the nonlocal theory where 
nonlocality is connected with the electron field: 

L~,(x) = e :~(x)',/¢qffx)Ao.(x): (3.7) 

where ~(x) is the nonlocal electron field defined by the expression (1.1) and 
its propagator has the form 

St(x - y) = (01T[qt(x)qT(y)] 10) 

_ 1 f d4 p e_ip(x_y ) 
(2T04i d 

~2(_p2/2) 

m 2 _ p2 _ ie 
(m +/5) (3.8) 

4. Finally, the Lagrangian (3.4) describes the essential nonlocal theory 
where both the photon and electron fields carry the nonlocality property 
simultaneously. Here the interaction Lagrangian is 

L4,(x) = e :~(x)'y¢~(x)A~°"l':al(x): (3.9) 

In this case, matrix elements of the S-matrix are constructed by using the 
nonlocal propagator of the photon (3.6) and electron (3.8), respectively. 

In this paper, we consider the nonlocal theory which is described by 
the Lagrangian (3.3). 

4. E X T E N D E D  E L E C T R O N  A N D  ITS S - M A T R I X  T H E O R Y  

In our scheme, a spread-out (or extended) electron is described by the 
wavefunction (1.1) and its nonlocal propagator is (3.8). The S-matrix for a 
such theory is constructed analogously to Efimov's nonlocal theory: 

S =  T~d exp{ I d4xL3.(x)} (4.1) 

where the symbol T,~ is the so-called Wick T-product or 1"*-operation (for 
example, see Bogolubov and Shirkov, 1980) and 8, d correspond to some 
intermediate regularization procedure (Efimov, 1977) and d-operation (Nams- 
rai, 1986) which make all matrix elements of the perturbation theory finite 
and gauge invariant. 
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In order to construct the perturbation series for the S-matrix (4.1) by 
prescription of  the usual local theory, it is necessary to change (in the Feyn- 
man diagrams) 

A~(x -- y) ~ A¢~(x - y) (unchanged photon propagator) 

S(x - y) ~ S~(x - y) 

in accordance with formula (3.8), and to use the generalized vertex (at the 
external photon lines) 

~l~. ~ Urn(k, q) = -d~(k)S~l(O) (4.2) 

where the actions of the d-operation are [for details, see Kroll (1966) and 
Namsrai (1986)] 

k ~  = 
1. d~(k)0 = [(q + i )  - q] 7 " ~  

2. k.d~(k)O = 

3. d~(k)V(-qZl  ~) = [V(- (q  + k)2/z) - V(q2/Z)]/~/o. kS (4.3) 

4. d¢(k)V- t(_q212 ) = _ V - l ( _ ( q  + k)212)[d~(k)V (_qzl2)] V-l(_q212 ) 

In our case V( -qZ l  2) = /~(_q212)] 

5. d¢(k)Sl(q) = $1(0 + l¢)Ul~(k, q)Sl(O) 

where Ul~(k, q) is defined by (4.2). 

5. THE PRIMITIVE FEYNMAN DIAGRAMS 

(4.4) 

l-l~.(k,, k 9  = ~ - 

where 

Let us consider the Feynman diagrams of Fig. 1 in the nonlocal theory. 

5.1. The Vacuum Polarization Diagrams 

The matrix element corresponding to this diagram (Fig. 1 a) has the form 
(Namsrai, 1986) 

e 2 1 
(2"rr) 4 2 d4q V(-q212)SP{f'~'(q" kl, k2)Sl(0)} (5.1) 

kl + k 2 = 0  

S1(02)['¢~(q, kl, k2)Sl(q) = ( -  1)2d~.(kOd,,(kz)St(O) 

(q2 = q + k~ + k2 = q) 

(5.2) 
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a) b) c) 
Fig. 1. The primitive Feynman diagrams in the nonlocal theory. 

This diagram was investigated in Namsrai (1986) and has the gauge- 
invariant form 

e 2 1 f-13+i~ = d~ v(O r ( - ~ )  
l-I¢~(k) ~ (k¢k,, - k2go.,,) 2ii .,_f~+s= ~ (m2/2)~ F(1 - ~) 

× dxx(1 - x )  1-~ 1 - ~-Sx(1 - x )  ( 0 <  13 < 1) (5.3) 

where we have used the form factor (1.3) and its Mellin representation 

1 ~-~-i~ d~ 1 2-2q2~[m 2 + q~]~ (5.4) 
V(qZ[2) = 2ii J-~+i= sin 'rr~ F(I + ~) 

5.2. The  Se l f -Energy D i a g r a m  

The matrix element for this diagram (Fig. lb) is 

_ e 2 1 V(q212)~l~ ) m 2 
~(P)  (~-~)4 d4qE (PE -- qE) 2 + q2 

where we have used the Euclidean metric: 

P = (P4, P), p2 = p42 + p2, p4 = - i po  

JOE = (PE '~  E) = P4~4 + P'Y = -Po~/o + P~/ = -(P'Y) = -/~ 

~,~h,~  ~ + ~ h , ~  E~ = - 2 ~  (8, ,  = ~22 = ~33 = ~4, = 1) 

"y~E'/~E3~ e ) =  2/~E ~/~E,~/~E) = --4 

(5.5) 
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After some elementary calculations and passing to the pseudo-Euclidean 
metric, one gets 

e 2 1 f-13-i~ d~ v ( )  (m212) ~ 
•(P) - ~ 2i J-13+i= (sin 7rl~) 2 F(1 + I~-----~ F(I~, p) 

1 fo ( i F ( { , p ) - F ( 1  - 6) dx 1 - ~ x  ( 2 m - p x )  (5.6) 

where 

1 v(~) = 2 -2~ 
F(1 + ~) 

in accordance with (5.4). 

5.3. The  Vertex Diagram 

In the pseudo-Euclidean space, the vertex function corresponding to this 
diagram (Fig. l c) has the form 

= --i-leZ(2,rr) -4 ( d4k  A ( - - ( p  -- k)2)~l~lu~(q)St(k)~lv (5.7) F~(p, q) 
3 

where by definition 

1 1 1 
= 

d~(q)S l (k )  m -  i t -  cl V ( - k2 /2 )  m - /~ + m' - / ~ - ~  

× [V(-(q + k)Z/2) - V(-k2l'2)] q2 

For calculational purposes, the following identity is useful: 

V(-  (q + k)2l 2) - V(- k2/2) 

1 f-13-i~ dl~ v(l~) 
= _(q2 + 2(kq)) ~ J-13+ioo ~ ~/2~ 

Io x dx  [m 2 - k 2 - 2x(kq)  - q2x]~- 

(5.8) 

After standard but tedious calculations we have in the mass-shell p2 = 
p,2 = m 2 

(5.9) 
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Here 

fj(x, q2) 

-ff(p')I'~(p', p)u(p) = -ff(p')A~(q)u(p) (5 . t0)  

i 
A~(q) = "/o F l (q  2) + ~mm crc'~q~F2(qZ) (5.1 1) 

e 2 1 f-13-i~ - d~ v(~__) (m2/2)~) fj(~, 
Fj(q2) 8"rr 2i J-~+i= (sin 7r~) 2 F(1 + q2) 

(5.12) 

_ I F ( I  6) f f f~  d°~d13d~t'Y-e~(1-°~-13-~t) 

gj(ot, 13, ~,, q2) 
× [hc~ + (1 -- c~) 2 - 13~q2/m2]l-~ 

+ 6  dx 

Gj (or, [3, % x; q2) ] 
× [ha + (1 - 002 -- 13"yq2/m2 -- (q2/mZ)(x'y - x22fl - 2x~/(13 + a/2))] l-¢ 

where 

(5.13) 

q2  
gl = [(1 - c02(1 - 6) + 2 a ~ ]  - [13~/ + ~ ( a  + 13)(a + ~/)] ~-~ 

gz = 2~ot(1 - a )  

+ 1~(1 - 13 - x~/)(--I + ~ + 213 + 2x~) ~-~ 

G2 = - 2 ~ ( - 1  + ~ + 213 + Z ~ )  

Here account  is taken of  the photon mass h = m~hlm 2 in order to avoid 
infrared divergences in the vertex function. Let us write down expression 
(5.1 1) in the two limiting cases m2/2 << 1 and q21m2 << 1. 

The result is 

F2 (q2 )=  °t [ 1 2 ] -2---~ - ~ v(1)mZ/2 (5.15) 
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and 

ot { 1 m~. 2 _ 7 8 m212 F~(q 2) = ~  l n ~ -  21nm~h v ' ( O ) + ~ - -  

+ m2 

,nm + 2 m + , ) ( , n  + 

where a = e2/4w is the fine structure constant. 

6. RESTRICTION ON THE "SIZE"  OF THE E L E C T R O N  

In the phenomenological nonlocal theory where we have introduced the 
form factor of the theory it should be understood that the parameter l may 
be interpreted as the "size" of extended objects, say electrons. There is definite 
interest in obtaining bounds on this parameter. Local quantum electrodynam- 
ics is the best tested theory in physics; so far no deviation has been found 
even at small distances. Tests of locality are usually performed by using very 
high precision experiments in physics. We apply here experimental data from 
measurements of anomalous magnetic moments (AMM) of leptons. A QED 
breakdown would imply that the electron (or the muon) has a finite size. The 
nonlocal contribution to the AMM is defined from the vertex function A~(q) 
in (5.11) containing the term with ¢r~q~, i.e., (5.15). 

At present, the experimental values (Particle Data Group, 1988) of the 
AMM of the electron and the muon are 

A,d e) = 1.001159652193 + 0.000000000010 ~-'exp 

A,,(~) = 1.001165923 + 0.000000008 t~exp (6.1) 

and are fully described by the local QED. Comparing the correction (5.15) 
with (5.17), one obtains bounds 

le - < 8.8 × 10 -~5 cm for ap~exp- ce) 

1~ < 1.2 × 10 -15 cm for A,,I~ - -  ~ t ~ e x p  

(6.2) 

This means that leptons are pointlike particles with radii smaller than 
10 -15 cm. 



Extended Electron and Nonlocai EM Interaction 817 

ACKNOWLEDGMENTS 

One of the authors (Kh.N.) would like to thank Prof. C. Wetterich for 
valuable discussions and his warm hospitality at the Institut fur Theoretische 
Physik, Universit~it Heidelberg, and DAAD for financial support. 

REFERENCES 

Bogolubov, N. N., and Shirkov, D. V. (1980). Introduction to the Theory of Quantized Fields, 
3rd ed., Wiley-lnterscience, New York. 

Efimov, G. V. (1977). Nonlocal Interactions of Quantized Fields, Nauka, Moscow. 
Green, M. B, Schwarz, J. H., and Witten, E. (1987). Superstring Theory. Cambridge University 

Press, Cambridge. 
Kroll, N. M. (1966). Nuovo Omento A, 45, 65-92. 
Namsrai, Kh. (1986). Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics, 

Reidel, Dordrecht, Holland. 
Namsrai, Kh., and Njamtseren, N. (1994). A model of the extended electron and its nonlocal 

electromagnetic interaction: Gauge invariance of the nonlocal theory, Preprint ICTP, IC 
1994, 271, Miramare-Trieste. 

Particle Data Group (1988). Physics Letters, 204B, 1-486. 


